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Abstract-Besides purely geometrical non-linearity, unstable solutions in finite elasticity may arise
due to non-linear material behaviour. In this paper, a stability criterion is developed with which
these so-called material instabilities can be distinguished from geometrical or structural instabilities
like the buckling of shells and plates. Finally, the value of this criterion is demonstrated analytically
by examining the case of a cube under triaxial tension. To obtain realistic results, the stability
investigation is based on the material model of Ogden, which is characterized by excellent agreement
with experimental results. © 1997 Elsevier Science Ltd.

I. INTRODUCTION

Instabilities in finite elasticity can be caused by geometrically non-linear effects as well as
by non-linear material behaviour. Examples of the former type of instability, so-called
structural instability, include buckling in shells and plates. They occur when negative
stresses dominate in the body. To detect this kind of instability, large deformations must
be considered, whereas the material behaviour can still be linear. The geometry of the
system and the boundary conditions influence such instability behaviour qualitatively, while
material properties have only a quantitative influence. That such is the case can be seen
from the classical calculations of the buckling loads of rods, plates and shells [see Chajes
(1974) ; Thompson and Hunt (1984)]. Indeed, for fixed geometry and boundary conditions,
the choice of different material properties may increase or decrease the buckling load, but
cannot prevent the buckling of the structure.

In contrast to that, the material stability behaviour is substantially dominated by the
type of the material model and the choice of the material parameters, i.e. material insta­
bilities can be avoided by choosing a different material. Certainly, the boundary conditions
and the geometry of the structure still have an influence on the stability behaviour. In
general, then, the overall stability of a structure is influenced by its geometry, the boundary
conditions it is subject to, as well as its material behaviour.

On the other hand, material instability is in fact of a completely different nature
than a structural instability. First of all, the secondary deformation state can still be
homogeneous, in contrast to buckled structures. Furthermore, material instabilities arise
only when the stress field in the body is positive. Finally, large, rather than moderate,
deformations have to be applied to induce material instability. An example of this is a
quadratic sheet in a plane stress state with equal loads on each side [see Shield (1971) ; Ogden
(1985) ; Kearsley (1986) ; Chen (1987); Muller (1992)]. In the context of the Mooney-Rivlin
model, beyond a certain load level, the quadratic deformation state (same strains in both
directions) becomes unstable and a secondary load-deformation path associated with a
rectangular deformation state is obtained. For the neo-Hooke model, however, the quad­
ratic deformation state remains stable.
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The question is now whether this effect, which represents a typical material instability,
is an artifact of thc material model, or whether it is physical. Such an instability was
observed in an experiment of Treloar (1948), carried out for a swollen vulcanized rubber
with 2% sulphur. According to Treloar, in contrast to the neo-Hooke model, the Mooney­
Rivlin model fits the experimental results in a satisfactory way. Although the kind of rubber
used for the experiment exhibits noticeable hysteresis effects (Treloar, 1947) ; Treloar (1948)
excluded the possibility that this instability is caused by relaxation. Interestingly enough,
such an instability was not reported in any of more recent experimental studies (Obata et
al., 1970; James et al., 1975; Jones and Treloar, 1975; Vangerko and Treloar, 1978).
Taking a closer look at the experimental conditions in these works, however, reveals that
Treloar (1948) was the only experimentalist to control the force in both directions, i.e. the
other experimentalists controlled the displacement in at most one direction, which prevented
them from observing the instability.

In practical situations, of course, it is desirable to avoid instabilities of any kind.
Investigation of material or other instabilities detected in experimental work via material
modelling may allow one to determine how such instabilities can be avoided. Furthermore,
the detection of material instabilities during modelling which have not been observed
experimentally may be an indication that the material properties of the model are not in
complete agreement with its physical behaviour and may require further investigation.

The purpose of the current work is to present a method allowing the detection of
material instabilities, and their differentiation from structural instabilities, in a simple way.
The method is general enough to include visco-elastic and plastic material behaviour, which
is exhibited by rubber as well. To allow analytical calculations, however, the stability
investigations in this paper are restricted to finite elasticity.

To avoid material instabilities, the dependence of these on material properties must be
described as realistically as possible. In most of the earlier contributions [see, besides the
above mentioned, Rivlin (1974); Sawyers (1976); Ball and Schaeffer (1983)], only two­
parameter models like the Mooney-Rivlin model (Mooney, 1940; Rivlin, 1948 a-d; 1949
a-e; Rivlin and Saunders 1951), or one-parameter models like the neo-Hooke model
(Treloar, 1943), were used. For most rubbers, these material models are too simple to
explain experimental results (Tschoegl, 1971 ; James et al., 1975; Jones and Treloar, 1975;
Twizell and Ogden, 1983). On this basis, the present work is based on a more general
material model for finite elastic material behaviour, i.e. the six-parameter model of (Ogden
1972, 1984). The fit of this material model to experimental data is also discussed in detail
by Twizell and Ogden (1983), and shows very good agreement with the experimental results
of Treloar (1944) up to 600% strain. Since the material model is purely elastic, the fit was
carried out for a type of rubber [see Treloar (1944)] which exhibits nearly ideally elastic
deformation behaviour (Ogden, 1972). Later, James et al. (1975) and Jones and Treloar
(1975) confirmed the applicability of Ogden's material model to rubbers showing noticeable
hysteresis. The material model of Ogden is convenient as a basis for the present stability
investigations because it contains the neo-Hooke and the Mooney-Rivlin model as special
cases. Thus, the agreement with previous results (Rivlin, 1974; Sawyers, 1976; Ball and
Schaeffer, 1983) can be checked easily. The method of eigenvalue splitting described in this
paper, however, is not restricted to the use of the Ogden model and can be applied to other
material models without much effort.

To begin, we introduce the strain energy function and some restrictions on the material
parameters guaranteeing strong ellipticity of the resulting equations of motion in Section
2. For the purpose of detailed parameter studies, the stability investigations are carried out
analytically. Due to the complexity of the non-linear equations, however, it is necessary to
restrict the calculation to homogeneous deformation states. A corresponding "local" stab­
ility criterion is developed in Section 3. Inhomogeneous deformation states can be taken
into account if a numerical method, e.g. the finite element method, is used [see Reese (1994),
Reese and Wriggers (1995)].

Although it is well-known that there are different types of instability arising in finite
elasticity, none of the earlier investigations dealt with a method to distinguish one type of
instability from another. For this purpose, a new method called eigenvalue splitting is
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formulated in Section 4, with which one can distinguish material instabilities from structural
instabilities. Finally, in Section 5, the example ofa cube under triaxial tension is investigated_
This example has been treated in the literature before [see Rivlin, 1974; Sawyers, 1976;
Ball and Schaeffer, 1983; Marsden and Hughes, 1983]. Since these authors only considered
the Mooney-Rivlin material, their results are obtained here as special cases.

2. STRAIN ENERGY FCNCTION

According to the principle of objectivity and the assumption of material isotropy the
specific strain energy function W is written as a function of the principal stretches ;'1, ;'2
and ;'3 [see Ogden (1972)]. These represent the principal values of the right stretch tensor
U = RT

• F and the left stretch tensor V = F' RT with the orthogonal tensor R and the
deformation gradient F. To fulfill the incompressibility condition exactly, the Lagrange
multiplier method is applied. We use the strain energy function

(I)

derived by Ogden (1972) for incompressible materials. W depends on the material par­
ameters {Ir and ~r'

The strain energy function is constructed in such a way that if fulfills the polyconvexity
condition [see Ball (1977)] and some requirements for existence of solutions [see Ciarlet
(1988) ; Simo (1995)]. The requirements are summarized as

limW=x
.1 0 '

lim W = -X!,
!-.-,-

limW= O.
F~I

J = ;'2)'2)3 is the determinant of the deformation gradient F. To fulfill the condition of
polyconvexity, the inequalities

J1r~, > 0,

I~rl > I

must hold for the material parameters (no summation over r) [see Ogden (1972, 1985);
Ciarlet (1988)]. W represents different materials according to the choice of the parameters.
For a neo-Hooke material (n = I, ~I = 2) [see Treloar (1943)], J11 can be identified with the
shear modulus G, while for a Mooney-Rivlin-material (n = 2, ~I = 2, ~2 = - 2) [see
Mooney (1940); Rivlin (1848 a-d); (1949 a---e); Rivlin and Saunders (1951)] 2G = J11~2

holds.
In contrast to the neo-Hooke model, the six-parameter model developed by Ogden

(1972) correlates with experimental results even for large strains up to 600%. The material
parameters determined by Ogden fulfill all mathematical and physical requirements.
Additionally, as can be seen above, the six-parameter model contains simpler common
material models like the neo-Hooke model and the Mooney-Rivlin model as special cases.
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3. STABILITY CRITERION FOR PURE HOMOGENEOUS DEFORMATIONS

We start from the weak form of equilibrium (p Lagrange parameter)

(2)

where the Lagrange parameter p has been introduced for the incompressibility condition
U(J) = J - 1 = O. From eqn (2), the two equations

9AF,p) = r P:c5FdV-g,,=O,
JJdo

9p (F,p) = r - U(J)c5pd V = 0

J"o
(3)

can be derived. A colon stands for the scalar product of two tensors. For the first Piola­
Kirchhoff stress tensor P we have the expression

~ oW oU
P = P(F,p) = of -p of

ga denotes the virtual work of the static external load, which is here assumed as being
deformation independent.

From the Taylor expansion of gp = 9p(F,p) we obtain with F = F+L1F and constant
p

(4)

where

defines the directional derivative (Gateaux-derivative).
The solution of eqn (2) is unique if the inequality

holds. In the case of a singular or non-unique solution, the directional derivative goes to
zero, which yields eqn (2)

r ap
J.'2

o

c5F: of: L1FdV = O. (5)

Since only pure homogenous deformations will be investigated in the following, the stability
behaviour is analyzed locally. Then, in every point of the body, the condition

c5F:d:L1F = 0

has to be fulfilled, were d denotes the rank four constitutive tensor

(6)
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Equivalent to eqn (6) is the solution of the eigenvalue problem

3437

(7)

with at least one zero eigenvalue w(i). ci>(il represents the associated eigentensor. Note that,
over bracketed indices, no summation takes place. 14 represents the rank four identity
tensor. A stable unique solution is indicated by the positive definiteness of d. This means
for all eigenvalues

(8)

In eqn (8), the symmetry of the constitutive tensor d, which is given by the derivation of
d from Wand U, has been used. In the following, the inequality (8) will be called "local
stability criterion". It is essential that eqn (8) represents a stronger requirement than the
condition for strong ellipticity

(m @ N):.s:1 :(m ® N) > 0, m =f. 0, N =f. 0, (9)

which is implied by the condition of polyconvexity (Ball, 1977). The sign @ represents the
dyadic product. For the difference between the requirement for stability and the one for
strong ellipticity, see also Simpson and Spector (1983 ; 1987). Since polyconvexity can easily
be guaranteed by an appropriate choice of the material parameters, loss of strong ellipticity
(localization) is excluded for hyperelastic materials under static loading.

4. "MATERIAL INSTABILITIES" AND "STRUCTURE INSTABILITIES"

By means of the relation P = F . S between the first Piola-Kirchhoff stress tensor P
and the symmetric second Piola-Kirchhoff stress tensor

- [aw au]S = S(C,p) = 2 ac -p 8C

with the right Cauchy-Green tensor C = FT. F, we can rewrite eqn (3a) in the form

§F(F,p)' = §dC,p) = f S: sym(FT. 6F)dV-ga = O.
.!40

The directional derivative is calculated by

D§c(C,p) : AC = 1,0 [2 ~~: sym(FT. AF) : sym(FT. 6F) + S: sym(AFT. 6F)} V.

Taking into account only homogeneous deformations, a singularity is indicated by

!l' : sym(FT. AF) : sym(FT. 6F) +S· sym(AFT. 6F) = O. (10)

Here two influences have to be investigated. The first part of eqn (10) contains the rank
four constitutive tensor
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as lD
2

W 0
2

U J!f'=2-=4 ---p--DC DeDe aeoe (11)

and represents, therefore, the influence of the constitutive model of the material parameters.
This part can only be negative and, therefore, cause the instability of a solution, if !f' loses
its positive definiteness. Note that the fulfillment of the polyconvexity condition does not
require the positive definiteness of .91 or !f'.

Remark I
A frequently computed material model, which does not fulfill the condition of poly­

convexity, is the so-called St. Venant material law. It is related to the strain energy function
Wv = liE: E+ 1./2(E: 1)2. Although it does not match all mathematical requirements, it
can still be used for the investigation of structural instabilities as buckling phenomena,
when only small or moderate strains are present. This is due to the fact that instabilities of
this kind are caused by the second part of eqn (10) becoming negative. Evidently, they
occur independently of a special material model. Thus, the choice of the constitutive
equation plays only a subordinate role, if negative stresses dominate in the body.

The split into material and structural parts is only possible if symmetric tensors are
used in the weak form of equilibrium. One could object that this fact calls the physical
meaning of the split into question. However, it will be shown in Section 5 that physically
irrelevant eigenmodes like rigid body rotations are excluded only if the stability investigation
is based on symmetric strain measures.

To obtain a local stability criterion like eqn (8), it is necessary to calculate a fourth
order tensor JII such that the equation

S: sym(AFT
• bF) = ,~t :sym(FT

• AF) : sym(fT . 6F)

holds. By means of the relation

first the fourth order tensor Jill is determined. With

we obtain

and finally

The relation

leads to the equation

(12)
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which has a non-trivial solution

Analogously, we can derive tensors such that the relation

S :(ilFT. 6F) = ./// I : (FT. ilF) :(FT. 6F)

:(ilFT. F) :(FT. 6F)

= jt, :(FT. ilF) :(6FT
• F)

= JPt4 :(ilFT. F) :(6FT. F)

holds, from which follows

S :(ilfT . 6F) = ~ J!t' I :(FT. ilF) :(FT. 6F) +~ jt2 : (ilFT. F) :(FT
• 6F)

+~j/3 :(FT 'ilF) :(6FT
'F)+~

3439

The tensors FT. ilF and ilFT. Fare splitted in a symmetrical part sym
(FT'ilF) = sym(ilF' F) and in a skew-symmetrical part skw (FT. ilF) = ~ skw(ilFT. F).
We obtain

S :(ilFT. 6F) = ~(jt I + j{ 2 + ./!t', +,/!t'4) : sym(FT. ilF) : sym(FT. 6F) (13)

+~(J!t'l -./!t'2 +./It'} -'///4): skw(FT. ilF): sym(FT. 6F) (14)

+~(J!t' I + At2 - J!t'} - JP/4) : sym(FT. ilF) : skw(FT. 6F) (15)

+~(./ttl -j'/2 ~u1t, +./pt4) : skw(Fr . ilF) : skw(FT. (W). (16)

Due to the relations

between the coefficients of JIt',(I= 1,2,3,4) the terms (14), (15) and (16) are zero, and it
remains the expression

S :(ilFT. 6F) = ,~(Atl +Jtt2 +./tt, +A(4 ) : sym(FT. ilF): sym(FT. 6F) .
.;{

Thus, analogous to eqn (7), we have the eigenvalue problem

The local stability criterion is now given by
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(17)

where the symmetric rank two tensor <l>U) = sym (FT· <l>U)) has been introduced as eigen­
tensor.

For the analysis it is convenient to carry out the calculation in the current configuration.
Then the local stability criterion (17) transforms to

(18)

with

(19)

and <l>U) = F-T
• <I>(i). F- 1

• Using the symmetry properties of'§' and !2t, we obtain in matrix
notation

W U) = c1>~) (Cr +151P) c1>~) = c1>~) Crc1>~) + c1>~) 151hc1>~), a, b = 1,2, ... ,6. (20)
~ ~~

The explicit form of Cr and Dr will be derived in the next section. The index E means that
the matrix elements are calculated with respect to principal axes, which coincide for the
cube under triaxial tension with the symmetry axes. A material instability is associated with
the negative definiteness of the material matrix Cr. In eqn (20), this is indicated by a
negative eigenvalue part we. In the case of wD < 0, we have a structural instability.

This "eigenvalue splitting" is a new method to determine the reasons for instabilities in
finite elasticity. For analytical investigations, the limitation to homogeneous deformations is
necessary due to the complexity of the resulting equations; but the eigenvalue splitting can
easily be extended to inhomogeneous deformations if a numerical method like the finite
element method is used [see Reese (1994); Reese and Wriggers (1995)].

5. ANALYTICAL STABILITY INVESTIGATION OF A CUBE UNDER THREE-AXIAL
TENSION

The goal of the following investigation is to analyze the role of the eigenvalue parts
we and wD for the hyperelastic cube under triaxial tension. The procedure is summarized
in Table 1.

The problem of a hyperelastic cube under triaxial tension is called the "Signorini
problem" in the literature. The loads are equal on each side and are equally distributed
over the area. This example has been treated by Rivlin (1974); Sawyers (1976); Ball
and Schaeffer (1983) [see also the textbook for Marsden and Hughes (1983)]. While the
calculations of Rivlin and Sawyers are based solely on the neo-Hooke model, Ball and
Schaeffer, and Marsden and Hughes also considered the Mooney-Rivlin model. However,
neither of these investigations deal with the Ogden model or contain any discussion about
the mechanical reason for the instabilities of the hyperelastic cube.

Before the stability investigation can take place, the coefficients t~ = C'l + D'l have to
be determined. Using the normalized orthogonal eigenvectors nUl of the eigenvalue problem
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Table I. Analytical stability investigation

(I) Determination of solutions which fulfill equilibrium

For every material model:
(2) Solution of the eigenvalue problem

for the load-deformation paths calculated under eqn (l)

(3) Split of the eigenvalues into material parts and structural parts with

w(i) = clJ~:)C::!,clJ~' + clJ~) I5::!,clJh"
~ '----y--------'

(4) Determination of the reasons for an instability

w(i) ~ 0, wi;, < 0 = material instability

WI" ~ 0, wf,) < 0 = structural instability

3441

(21)

(b - ;.fi) 1) . Dei) = 0 as base vectors, the constitutive tensor C(j can be written as

C(j = CtlOi ® OJ ® Ok ® 0 1, i,j, k, 1= 1,2,3.

Note that b = F· FTand C = FT. F have the same eigenvalues. The evaluation of the strain
energy function (1) leads with eqns (11) and (19) to

i=1,2,3,

where C = Ie} denotes the principal values of the right Cauchy-Green tensor C. Further­
more, we obtain

ii=j.

For the derivation of the remaining coefficients see Chadwick and Ogden (1971 a; b) or
Ogden (1984). We have

n

~(Ci212+Ci221) = C14 = L~(C1I-Cl,2),
1'=1

(JI A~ - (J2 ).~

A~ -).~

(22)

with the principal values Si of the second Piola-Kirchhoff stress tensor S and the principal
values
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F3

L

F2 -1--,t-

3

}-2
1

Fig. I. Cube under triaxial tension.

/I

(J' = I f.11;'~'-P, i = 1,2,3
r-=--I

of the Cauchy stress tensor (J = IjJ(F' S' FT
). The coefficients C~.s and Ci" are calculated

analogously, by exchanging the indices in eqn (22). For the coefficients of the "stress
tangent tensor" 0:, we obtain

D'ioIl =15Z=o, i,)=1,2,3, ii=j

and

15j,5 and 1516 have to be determined analogously. All other coefficients of({,' and !"j are equal
to zero with respect to principal axes.

5.1. Equilibrium
The equilibrium condition for the cube in Fig. I, Div P = 0, yields, combined with the

constitutive law, the principal first Piola-Kirchhoff stresses
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" P F
Pi" .,-] j= L. {l,A j ' - -;;- = -

,~I ~i A

Due to F] = F2 = F3 the equality pi = p2 = p3 holds.
We have to distinguish between three solution cases.

3443

(23)

(1) AI = )'2 = A3 = I
This first solution represents the primary solution path which is associated with the unde­
formed system. It has to be emphasized that this deformation state is not necessarily stress­
free: eqn (23) yields

"pi= III,~p,
r= I

(24)

where the hydrostatic pressure remains variable.
(2) AI #- )'2; /.3 #- A2

In this case the hydrostatic pressure can be determined. From pi = p2 we obtain

(
I I ) " ):. 1 '1'::l:.--1P -;- - -;;- = L II,().I' -1.2' )

III 1'2 ,~I

(25)

The limit procedure A] ---> )'2' for )'2 = I, yields

"
lim p = L {l,(I-x,)
AI-/'1 r= 1

and finally for all components pi

"pi = I {l,X,.
r= 1

(26)

Therefore, the so-called secondary load-deformation path ().I #- A2; )'3 = ;,,) bifur­
cates from the primary path at the stress value (26). We further obtain, with the
hydrostatic pressure (25),

(27)

as stress-deformation relation. Note that the preceding derivation holds anal­
ogously for AI #- ;'2; A3 = )'1 and for cyclic permutations of the indices.

(3) ;'1 #- A2 #- )'3

On the so-called tertiary solution path there are three distinct principal stretches
A,. With eqns (25) and (27), which are also valid for three distinct )'h the condition
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(28)

has to be fulfilled. In the case of a Mooney-Rivlin material with 112 = - kill, eqn
(28) simplifies to

A

It is immediately clear that, for the neo-Hooke model, because of k = 0 =A = -1,
a tertiary solution path does not exist. If one assumes that the tertiary solution
path bifurcates from the secondary path Al = ,12 or A2 = ,13, then, in the general case
(k i= 0) the quantity A goes to zero at the intersection of the secondary and tertiary
paths, so that

k = _,1_1_ or
A~+2

(29)

at that point. For k = 1/3, the cubic equation (29) has the only solution ;'1 = 1. If
o< k < 1/3 holds, there are two physically relevant solutions. For k > 1/3 a tertiary
solution path does not exist. In the case of an Ogden material, this investigation
can only be carried out using a symbolic manipulation system like Mathematica
[see Wolfram (1991)]. We will discuss the existence of a tertiary path for this
material model in combination with the stability calculation.

The primary and secondary stress-deformation paths for three different material models
are plotted in Fig. 2. The material parameters are chosen such that L;~ I NY., = 2.0 holds.

pI = p2 = p3

6rn.......-,---.......-T""--........--:lr---T7'7'"""__oo---.....,

5

4

3

2

1

n

L Pr ar = 2.0
r=1

--Neo-Hooke (NH)
------ Mooney-Rivlin (MR)
--- Ogden (OG)

o'-:O~-.......--2~----4~---~6~---~8~ Al

~ MR OG

PI 1.0 0.8333 1.4911
Cki 2.0 2.0 1.3

P2 - -0.1667 -0.02367
a2 - -2.0 -2.0

P3 - - 0.00284

Ck3 - - 5.0

Fig. 2. Primary and secondary solution paths.
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Therefore, the primary and secondary solution paths for all three material models intersect
in one point, i.e. for pi = 2.0. For every material model two secondary solution paths
associated with }'l # ;'2 = A3 and Al = }'2 # A3 are depicted.

5.2. Stability investigation
In this section we investigate the stability behaviour of a cube for the Mooney-Rivlin

and the Ogden material models. For the Mooney~Rivlin material model the results known
from the literature (Ball and Schaeffer, 1983) can be verified, however, we will see that the
criterion (18) excludes rigid body modes.

Mooney-Rivlin material. The Mooney-Rivlin material with

(30)

includes as a special case (k = 0) the neo-Hooke model (/12 = 0).
First, we investigate the primary path A] = A2 = }'3 = 1. The solution of the eigenvalue

problem (21) yields the eigenvalues

WI = 3k/1I+/11- 2p = 4k/1l-p +(-k/1I+/1I-P),
'-----y-----' '--------y-----

u.{ w?

(31 )

The coefficients of the associated eigenvectors are

1 -1 -1

1 1 0

r I} 1
1 - 2} 1 0 r 3 } 1

1
<1>=- ,{<1> j= j2 , <1> J= j2Jj3 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

{<I>4 L =
0 r s 0

,{<I>6 L=
0

1
,<1>L=

0 0

0 1 0

0 0 1

(33)

They are plotted in Fig. 3.
Due to the extra unknown in eqn (31), i.e. the hydrostatic pressure P, an additional

equation is required. Since the determinant of the material deformation gradient F is,
because of the incompressibility condition, equal to 1, we can write

a(detF) -T AA[ AJ. 2 AI.3
Ai = aF :AF = F : AF = -, + -.- +-, = O.

AI 1'2 A3

For the coefficients {<I>(i)}; of the eigenvector this yields

(34)
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Fig. 3. Eigenmodes.

so that the eigenform {<D1L is kinematically not possible. Therefore, we have a singular
solution for

from which follows with egn (24)

Referring to egn (26), which simplifies for the Mooney-Rivlin-material to pi = 2,u1( 1+ k) =

P~ri" it is immediately clear that the point of intersection between the primary and secondary
solution path marks the first singularity of the cube under tension.

From egns (31) and (32), we obtain, with 1= 2,3,4,5,6

WI = 0, wf < °=> material instability

It is essential that this material instability is characterized by a fivefold zero eigenvalue. In
contrast to earlier work (Rivlin, 1974; Sawyers, 1976; Ball and Schaeffer, 1983), where
only the stretch modes were mentioned, here three shear eigenmodes are also obtained.
Due to the fact that the stability investigation is carried out locally, we have simultaneously,
in every material point of the body, the same situation: there is an infinite number of linear
combinations of the eigenmodes (33) which also may become effective. For a global
investigation of the cube, which could be carried out by means of finite elements, we would
obtain a large cluster of zero eigenvalues for the load level associated with (Jcr'" Note that
this effect can only be demonstrated if a finite element formulation is used which does not
exhibit locking behaviour. The material stability behaviour stands, therefore, in crucial
contrast to structural stability behaviour, where only by a global stability investigation
instabilities can be detected.

Remark 2
For the natural state (A] = )2 = 1. 3 = I and (Ji = 0) the material tensor of linear elas­

ticity (small strains, linear stress-strain relation) is recovered from the constitutive tensor
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Cfl. Note that, due to Plio = -ai +1l = 0+11 -# Pcnb the solution is always unique in linear
elasticity theory.

Remark 3
In contrast to the present work Riv1in (1974) and Ball and Schaeffer (1983) used the

stability criterion (8). With the well-known relation [see Ogden (1984), p. 342]

A 'ECkl = ~ C'Elk/+ ~~, >.ik >.)1 .. k I I 2 3• v U u, I,], , = , ,
I·,.!-k A; .

n n 11

A1il = I 1l,(ar -2)+p+ I /l,-P = IIl,('l.,-1)
1'=1 r=\ r=1

A'? = ~P

_ n 11 II II I
A'l'! = r~1 ;(a,-2)+p+,~, 11,-P = ,~,2Il,'l.,

= fJ,

- /~

= (5,

n

I ~Il,(Ci, -2) +p = G.
r=1

For clarity, we write the eigenvalue problem (7) in matrix form:

fJ }' }' 0 0 0 0 0 0 q')Ul q')\ill11

r fJ }' 0 0 0 0 0 0 q')Ul q')Ul
22 22

" }' fJ 0 0 0 0 0 0 q')(il q')U)
( 33 33

0 0 0 <5 £ 0 0 0 0 q')Ul q')Ul
12 12

0 0 0 £ <5 0 0 0 0 q')Ul = (VU) q')(il (35)21 21

0 0 0 0 0 3 G 0 0 q')Ul q')UI
23 23

0 0 0 0 0 3 0 0 q')Ul q')Ul
32 32

0 0 0 0 0 0 0 3 [; q')U) q')Ul
31 31

0 0 0 0 0 0 0 [; <5 q')Ul q')\i~13

The results of Rivlin (1974) and Ball and Schaeffer (1983) can now easily be verified. They
obtained, with respect to eqns (31) and(32), three additional eigenvalues

II

w7 = w8 = w9 = I 11, - p.
r= I

The coefficients of the associated eigentensors are

[

0
-7 1

[<D L, =~ -1

v 2 0 HI
-I ]

~ ,

o
o

-1

(36)
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which represent rigid body rotations. Surprisingly, the eigenvalues 0)8 = 0)8 = 0)9 go to zero
for p = L~= j /In i.e. for the natural state! Evidently, this singularity cannot be physically
reasonable since the natural state is identified with the unloaded cube. Therefore, rigid
body motions as eigenmodes should be excluded from the eigenvalue problem which
requires the use of the stability criterion (18) instead of (8). Finally, this justifies the
definition of material instability in Section 4.

Note that in linear elasticity this case is automatically precluded by using the consti­
tutive tensor with respect to the symmetric strain measure Elin = ~ (Grad u+GradTu) [u
displacement vector], which does not contain the linearized rigid body modes.

It remains to investigate the stability behaviour on the secondary deformation path.
Now we have two equal principal stretches )'1 = )'2 = A. The third principal stretch follows
from Aj)'2A3 = 1= A3 = IjJeZ. Only the eigenvalues

and

with the eigenvectors

-1

1

- 2 I 0
2{<1> L = J2 0

o
o

o
o
o
I

o
o

can become negative. W 2 = W4 = 0 yields the bifurcation condition

which coincides, as expected, with eqn (29). The function k = k(A) is plotted in Fig. 4. Let
us investigate, for example, the material parameter ratio k = 0.2; the sign of w changes for
). = 0.415, ). = 1 and A = 2, where w = 0 for A = 1 indicates the bifurcation from the
primary solution path into the secondary path. Therefore, we have bifurcations from the
secondary into the tertiary path for A = 0.415 and A = 2. Since we < 0 holds for A> 0.2, it
is evident that we deal with material instabilities for k = 0.2.

Only for 0 < k ~ ~ does a solution )" =1= A2 =1= A3 exist. This result correlates with the
one of Ball and Schaeffer (1983), which was derived by equilibrium considerations (see also
Section 5.1). If the bifurcation from the secondary into the tertiary path exists, it is always
a material stability, since with I = 2,4
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is valid. This singularity is indicated by a double zero eigenvalue. It is associated with a
stretch and shear mode.

Ogden material. We now investigate the six-parameter model introduced by Ogden.
Ogden (1972) determined the material parameters for a specific rubber

/11 = 6.3 (.(, = 1.3

/12 = -0.1 (.(2 = -2.0

/13 = 0.012 (.(3 = 5.0 (37)

which correlate very wel1 with the experiments of Treloar (1944) for 8% sulphur rubber.
Treloar (1944) chose this kind of rubber because it shows highly reversible elastic behaviour
and is free of crystal1ization up to ca. 400% strain. Therefore, the usual assumptions made
in finite elasticity theory apply very well.

It is evident that changes of the material parameters could influence the stability
behaviour as well. To investigate the dependence of stability behaviour on the material
parameters, we introduce the material parameter ratios

With the help of Mathematica one can show that

where the eigenvectors (33) have been used. Thus, interestingly, the eigenvectors are inde­
pendent of the material model for this example. This substantially simplifies the calculation
of the eigenvalues and the eigenvalue splitting with
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On the primary solution path, we have the same stability behaviour for the Ogden model
as for the Mooney-Rivlin model, since the existence of the first singularity with

"
P~ri\ = I flr!X r

r=l

does not depend on the material model. In spite of this fact this singularity is caused by the
negative definiteness of the constitutive tensor (t. This represents an exceptional case in
finite elasticity, since material instabilities usually depend on the choice of the material
model. But, we have the special case here that in the undeformed state the material models
considered in this paper coincide.

More interesting is the investigation of the secondary solution path. In Fig. 5 (a)-(c)
and Fig. 6 (a)-(b), the contours W 2 = W 4 = 0 and w~ = w~ = 0 are plotted for i' l = )2 = A;
A3 = 1/2. Although for every calculation, i.e. for every figure, only one material parameter
has been varied, the strong influence of slight variations of the material parameters on the
stability behaviour is clear. In contrast to the Mooney-Rivlin material there can be not
only one or three changes for the sign of w = Uh, but also two, four or five. Because of

W2.4 = 0, wL < 0,

the contour w~ = w~· = a depicts that we deal in every case with material instabilities,
which, due to the strong material parameter dependence, was expected. Furthermore, it is
clear that the values (37) [leading to k 2 = 0.01587, k 3 = 0.0019] lie in the positive area of
w. Thus, for the parameters of this special material there is no tertiary load-deformation
path.

In Fig. 7 (a) and (b), the curves for the special cases k 3 = 0 and k 2 = 0.2 are plotted.
For !Xl = 2 and !X2 = -2, we obtain as a special case the Mooney-Rivlin model. The
dependence on kl for k3 = a and !Xl = 2, !Xl = - 2 has already been depicted in Fig. 4. It is
demonstrated that four-parameter models allow only one, two or three changes for the sign
of w. This leads to the expected statement that the complexity of the material stability
behaviour increases with the number of material parameters.

6. CONCLUSIONS

In the present paper, it is demonstrated that material instabilities in finite elasticity are
caused by the negative definiteness of the material tensor (C. This information has been
used to develop an easily applicable method, called eigenvalue splitting, which allows the
distinguishing of material instabilities from structural instabilities like buckling of shells
and plates. The essential results of the preceding investigation of the cube under triaxial
tension are summarized in Table 2.

It is observed that the material stability behaviour is characterized by multiple zero
eigenvalues. This clustering of zero eigenvalues occurs simultaneously in every point of the
structure. Such behaviour stands in contrast to structural stability behaviour, where, in
spite of a primary homogeneous stress state, secondary paths are associated only with
inhomogeneous stress states. In the latter case, clustering of zero eigenvalues might still
occur for a special choice of boundary conditions and geometry; but such zero eigenvalues
are obtained from the summary of contributions of the whole structure, which can have
positive or negative values.

The eigenvalue splitting method presented in this work has been developed in the
context of the Ogden model. On this basis, earlier results obtained for the Mooney-Rivlin
model could be recovered as special cases, facilitating validation of the method. This
method, however, is not in any way restricted to the Ogden model.
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Table 2. Essential results

(I) Equilibrium
Primary solution path: AI = A2 = ;'3 = I
• independent of the chosen material model

Secondary solution path: AI = A2 # 1'3
• quantitative influence of the material parameters
• existence for every material model

Tertiary solution path: AI # A2 # 1.3
• existence strongly dependent on the material parameters

(II) Stability investigation
Bifurcation from the primary solution path:
• fivefold zero eigenvalue
• eigenforms: two stretch modes, three shear modes
• material instability

Bifurcation from the secondary solution path:
• twofold zero eigenvalue
• eigenforms: one stretch mode, one shear mode
• material instability
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